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AFO6R-TK- 87- 1559

26th CDCUShort Paper

FEEDBACK STABILIZATION OF DISTRIBUTED SYSTEMS

Henry Hermes'

Department of Mathematics, Box 426
University of Colorado

Boulder, Colorado 80309

Introduction. -We consider- stabilization (minimum time to the zero solution) of wave and

beam equations via endpoint velocity control. In general9 consider a control system described

-t partial differential equation, with dependent variable denoted w = w(t,x), which admits

a as a symmetry generator and hence a conservation law which implies conservation of
9t

energy, denoted e(w(t,')). For the problems considered, it is shown that -L e(w(t,-)) is a con-
dt

vex function of the control u; the value u* which minimizes this can be expressed in feedback

form, i.e., if w(t,-) belongs to a Banach space B and I: B Rk is a closed linear map (a

finite dimensional measurement on the state of tht system; the output of sensors), then the

optimal control will have the form u* = 1(w(t,-)).

The energy decay of solutions of wave, or beam, equations via boundary control has

received much attention in the recent literature. In I1, the wave equation

@

-(x)aaa =o, (1)9t '- ai a9xat- B x

with t > 0, x E fl C R", Q open, bounded, connected and with boundary a0 = F, is studied.
.O

Assume p(x) P0 > 0; the matrix A = (ot,(x)) is positive definite symmetric (i.e., the inner

product (C, A(x) ) _ c 0o
l I2 for ,otne 0 > 0). Partition the boundary as I = Pl U F." with

tThis research was supported by AFVQ-R grant; AFOSR 86-0198.
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F1 relatively open and require w(t,x) =0 on F1 , w(tx)= h(t,x) a control for x E r,. The

energy of a solution w of (1) is

e(w(t, )) = (-) f [p(x)w'(t,x) + (wx(t,x), A(x)w,(t,x))ldx (2)

4If w satisfies (1) and L x) denotes an outward normal to 4f9, the divergence theorem yields

d e(w(t,-)) = f A(t,x)(w(tx), A(x)x))dx(3)
dtr(3

Change control from "position h" to velocity u(t,x) = h,(t,x) = w(t,x), x E r1 . From (3), a

natural choice to decrease energy is

* u(t,x) = w,(t,x) = -(wx(t,x), A(x)v~x)), x E r, • (4)

A great deal of the literature is devoted to an analysis of (3) with control choice (4). In [I1 an

invariance principle (extended LaSalle principle as given by Hale) is used to show e(w(t, )) -* 0

as t -* . Under more special conditions on the shape of 11 and with p(x) = 1, A(x) = l, the

,convergence rate e(w(t, c t > 0, is obtained, where c depends on the initial condi-r r+t), -

tions. It is well known [21, [3, Thin. 11, that solutions of the one-dimensional wave equation can

be driven to zero in finite time. conditions which insure this for quasi-linear hyperbolic equa-

tions can be found in [4). For more general systems, exponential asymptotic estimates of rate of

energy decay can be found in [51, [61. Recent results involving the physical character of sensors

- and actuators in energy decay are given in [7]. Energy methods for boundary control of the

beam equation can be found in [8], [9].

Our purpose, here, will be to stress geometry, optimality, the feedback nature of the con-

trols (with it the sensor placement problem) and to suggest interesting areas for further

research.
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1. The Endpoint Control of a Vibrating String

Let w(t,x) denote the vertical displacement at position x, 0 < x < 1, and time t of a

string of length 1. The equation of motion is taken as

%:, wit=w)O, 0< x<t1, t >O S

Initial Conditions (IC): w(O,x) = O(x), w,(O,x) = ?(x) (6a)

Boundary Conditions(BC): w(t,0) = 0, w,(t,1) = u(t) = control (6b)

The problem is to use the velocity control (or one could use height or right endpoint position

control) to drive the solution to w(tj, x) =wt(t,, x) = 0, 0 < x < 1, for minimum time t 1 . It is

well known, [2J, [3], that for the length one string and arbitrary initial data this can be achieved

. in time tj - 2 and no smaller time suffices. Indeed, calculations give the explicit formula

I t . . ' - , -( ) 4 ( -t ) -- r l ( 1 - t ) ) , 0 < t < I

.[ u*(t) = (7)
I -- l)(¢'t--l)+ r/(t-1)), 1 < t < 2

For this simple problem, we see in (2) that ri {0}, r 2 = {}, while if we denote the

solution of (5), (6) as w(t,x,u) to explicitly show the u dependence,

. -dte(w(t, ", u)) = u(t)W,,(t, I, u) .(8)

dt

* A natural choice (as in (4)) is to choose u(t) = -kw,(t, 1, u), k > 0. The interesting thing (as

will be shown) is that the right side of (8) is quadratic in u and has minimum at k = 1, i.e.,

u*(t) = -wx(t,l) is the optimal control. Indeed, one can see this by considering (5) with initial

conditions (6a) and (nonstandard) boundary conditions w(t,O) = 0, w(t,l) =-w,(t,1). This

problem can be explicitly solved by standard techniques; one readily fin~s that the solution

V satisfies wt(t,l) = u*(t) as given by (7).

%%.
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Finally, for the endpoint controlled string, we have

Proposition 1. The control choice u*(t) which pointwise minimizes

d
- e(w(t, , u)) = u(t)w (t, 1, u) satisfies u*(t) = -w,(t, 1, u*) and is the optimal control.

To prove this, solve (5) with initial conditions (6a) and boundary conditions (6b), leaving

u(t) arbitrary, in a region R containing the right boundary x = 1. Explicitly, for

R = {(t,x): x + t > 1, x - t > 0, x < 1} one may show

2-X-LX+t-I

w~t~x-u -) (2-x-t) + ()4(x-t) + f ?(~s+0l ~)Iw2 2u X-, 0

0 This allows us to compute lim wx(t,x,u), which, for 0 < t < 1, is
d~o 2" X-1l

W,(t,l,u) = 4(1-t) - ?7(1-t) + u(t). Substituting this in the equation for the time derivative of

.e(w(t, , u)) shs d e(w(t, -, u)) = u(t)[4(1-t) - r/(1-t) + u(t)], I < t < 1. Letdt

f(u) u( /-?7+u). This quadratic has a minimum at u*(t) =--)(t(1-t) - -t)),

0 < t < 1. A similar analysis shows that for 1 < t < 2, u*(t) = -- )(4'(t-i) + 17(t-l)).
2

Comparison with (7) shows u* is optimal.

The point to be stressed is the quadratic nature of the right side eq. (8) which assures an

absolute, pointwise, minimum. It is also, geometrically, interesting to note that the intuitive

idea of choosing the right endpoint (i.e., wt(t,l)) to be the negative of the slope of the wav.- at
5-..

this endpoint (i.e., -w,(t,1)), is optimal.

2. Endpoint Energy Control of a Beam

%- For ease of exposition we use the overly simple beam model
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pw, + Elw,,. =o, o < x <i, t > o (9)

I.C.: w(O,x) = €(x), w(O,x) = 7(x), 0 < x < 1

We assume a free right end yielding right boundary conditions

B.C.(R): w,(t, 1) = w (t, 1) = 0

The left boundary conditions will involve the controls and yield three natural problems.

Before discussing these, we note the energy now is

I

e(w(t,)) =(1) f (pw? + EIwA)dx (10)

which, using B.C.(R), satisfies

7-')" ~ ~~~d e(w(t,")= Elwj(t,0)Wxx., ) -Ewtt0w~(t,0) 1 I"dt "

Problem 1. The left endpoint velocity, i.e. wt(t,0), is the control and this end of the beam is

held so as to always have wx(t,0) = 0. This 'rives left boundary conditions

B.C.(L): w(t,0) = u(t) = control, wx(t,0) = 0

Problem 2. Consider the left end of the beam fixed at zero with the initi 11 slope, w,(to), the

control. More precisely, we take the time rate of change of the initial slope as control.

- B.C.(L): w(t,0) =0 (or wt(t,0) =0), wx(t,0) u(t) =control

Problem 3. Both initial (left end) height and slope are controllable.

B.C.(L): wt(t,0 ) = u,(t), wxt(t,0 ) = uj~t ) .

0.
Motivated by the result- of the one-dimensional wave equation, we see each problem sug-

. gests a natural control choice to decrease energy, i.e., in problem 1 choose u(t) = -w,,,(t,0); in

problem 2 choose u(t)= w.(t,0), in problern 3 choose u1(t) =-w..(t,0), u.t) W_ ,(t,0 ). Are

0,
S.. .. . ., .. .. , , . . - - - " t " ", " " ." ", • ". " "-'', , -- ' " "' -'-' ' "," 5 " ' . " ".,. - - . . " ' ' . " . ' . . " ' ' ' ' ' ' ' ' ' - - . . - ' " . . - . x . . . - . -



these choices (or positive multiples of them) optimal? For the sake of brevity, we examine only

problem 2 for which (11) becomesI d- e(wv(t, u)) =-El~v,,t,O)w.,u)(2

-- Elu(t)w,.(t,Ou)

where (again) stress of dependence of w on u is made clear where needed. The choice

u(t) = w,,(t,0) physically means pick the velocity of the initial slope to be the initial curvature;

a reasonable scheme! Also, physically, one expects Jul sufficiently large implies

d ' -(t, , u) >0 while u= 0 implies i e(w(t, -, u))= 0, i.e., --- e(w(t, -, u)) can be

0 Apected to be convex in u with (when w.,(t,O,u) 3& 0) a negative absolute minimum. To com-

pute, explicitly, one must calculate w,.(t,0,u). This may be accomplished via the Heaviside

operational calculus, see [10, pg. 51]. Briefly, let p -sh(t) = ;v,(t,0) so ph =u, W H

denote the solution of (9) with homogeneous boundary conditions and (symbolically) express the

solution of problem 2 as w(t,x,u) = w'"(t,x) + T(x)h(t). The nonhomogeneous part, i.e. v =Th,

must satisfy (EITXXcm + ppTv = 0,T() = 1, T(0) =0, T,,(l) =0, T.(I) =0. Considerin p

as a parameter, and letting a 2 
=pp2/El, one finds

T(x) = cje' "7 2cos(x '/7- + c.,e'/ 7 i sn(x \' o7rt) + c3e-' '/-cos(x 'l7a) + ce-' "si1n (x NVa/12)

Ne, NVe are interested in T,.(0)h, from w hich it follows only C2, C4 are of importance. Using the

boundary data and T as above, with tedious calculations one finds c.,.V, - Not-

*ing that a is a constant multiple of p), T x(O)h p 3 /0h - p/2 u which (see [10!) Implies

Jd.s

t

Finally, for a computable const~tnt c have the behAvior

0
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--dr t " ) "u(t)w." (t'O) +  cut -- (13)
(i,dt 0

.- Questions: 1. Can one carry out the above computations precisely and by choosing u to

minimize the right side of (13), explicitly calculate an optimal (for minimizing time to zero of

e(w(t, ", u)) control u*?

2. Can one use e(w(t,'))= yl(t), w, (t,0) = y0 (t) as two of a finite number (say n) of

measurements on a solution w such that yt, ,y, satisfy a controlled system of ordinary

differential equations? If so, one would use control to drive y1 to zero.
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